Date:

The Pendulum and Harmonic Motion

<u>Objective</u>: To determine the factors that influence the period of a pendulum. Investigated topics will include amplitude of the swing, mass of the bob, and the length of the pendulum arm.

Procedure:

Construct a pendulum with length of string about 40 cm and a fixed pendulum bob.

Part A: Investigating Amplitude

- 1. Record the mass of the bob and the length of the arm below.
- 2. Raise the mass to a small angle, less than twenty degrees is ideal, and release. Time how long it takes for ten complete swings to take place.
- 3. Change the amplitude to another small angle (approximately thirty degrees is good) and repeat.
- 4. Repeat once more at an angle of ten degrees.

Part B: Investigating Mass

- 1. Return to the original twenty degree angle for this part.
- 2. Use three different pendulum bobs and record the time it takes to complete ten full cycles.

Part C: Investigating Length

- 1. Return to the original mass and angle for this part.
- 2. Record the time needed for arm lengths that range from 10 to 65 cm, with 5 cm intervals used.

<u>Data</u>:

Part A:

Mass = _____ g

L

Length = _____ cm

Trial	Angle	Time for 10 cycles (s)	Period (s/cycle)	Frequency (Hz or cycles/s)
1				
2				
3				

Part B:

Amplitude =		degrees	Length $=$ _		cm	
	Trial	Mass (g)	Time for 10	Period	Frequency (Hz	

	_	cycles (s)	(s/cycle)	or cycles/s)
1				
2				
3				

Part C:

Trial	Length	Time for 10	Period	Frequency (Hz
	(cm)	cycles (s)	(s/cycle)	or cycles/s)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				

Results:

- 1. In a paragraph, describe which factors affect the period of the pendulum most, and which factors do not.
- 2. Use your data to graph the relationship between pendulum period and length from Part C.
- 3. Square the lengths of all the pendulum arms in part C.
- 4 Construct a second graph that shows the relationship between period and length². What is the relationship between period and $length^2$?