Chapter 22 The Solubility Product Expression Select the expression or number that completes each statement and write its letter in the space at the right. 1. The mass action expression for the reaction $Al(OH)_3(s) \longrightarrow Al^{3+}(aq) + 3OH^{-}(aq)$ is (A) $$[Al^{3+}] \times [OH^{-}]^{3}$$ (B) $$[Al^{3+}] \times [OH^{-}]$$ (C) $$\frac{[Al^{3+}] \times [OH^{-}]^{3}}{[Al(OH)_{3}]}$$ (D) $$\frac{[Al(OH)_3]}{[Al^{3+}] \times [OH^-]^3}$$. 2. The solubility product constant for $Mg(OH)_2$ is equal to (A) $[Mg^{2+}] \times [OH^-]$ (B) $$[Mg^{2+}] \times [OH^{-}]^{2}$$ (C) $$\frac{[Mg^{2+}] \times [OH^{-}]^{2}}{[Mg(OH)_{2}]}$$ (C) $$\frac{[Mg^{2^+}] \times [OH^-]^2}{[Mg(OH)_2]}$$ (D) $$\frac{[Mg(OH)_2]}{[Mg^{2^+}] \times [OH^-]^2}.$$ 3. Among the following the substance that is the most soluble is (A) FeS; $K_{\rm sp}=4\times10^{-19}$ (B) CuI; $K_{\rm sp}=1.1\times10^{-12}$ (C) AgI; $K_{\rm sp}=8.5\times10^{-17}$ (D) BaCO₃; $K_{\rm sp}=2.0\times10^{-9}$. 4. The solubility product of AgBr at 25° C is 5.0×10^{-13} . In a given solution the concentration of Br is 0.050 M. The maximum concentration of Ag that can be present at 25°C is (A) 1.0×10^{-11} M (B) 1.0×10^{-15} M (C) 0.05 M (D) 0.25×10^{-13} M. 5. At 25°C the solubility product of CaSO₄ is 2.4×10^{-5} . The solubility of CaSO₄ at this temperature is (A) $24 \times 10^{-3} M$ (B) $4.9 \times 10^{-3} M$ (C) $24 \times 10^{-6} M$ (D) $4.0 \times 10^{-3} M$. 6. The solubility of PbCl₂ at 25°C is 1.6×10^{-2} M. At the same temperature, the solubility product of PbCl₂ is (A) 2.0×10^{-4} (B) 1.6×10^{-5} (C) 4.0×10^{-6} (D) 1.6×10^{-6} . 7. At 25°C, the value of K_{sp} for SrCO₃ is 1.6×10^{-9} . The molar concentration of a saturated solution of SrCO₃ is (A) 4.0×10^{-5} (B) 1.6×10^{-3} (C) 4.0×10^{-3} (D) 1.6×10^{-5} . 8. If the solubility product constant for CaSO₄ is 2.4×10^{-5} at 25°C, then precipitation at 25°C will occur in a solution made by mixing 1.0 L of a 1.0×10^{-2} M solution of CaCl₂ with 1.0 L of a solution of Na₂SO₄ that has a concentration of (A) 9.6 × 10⁻⁵ M (B) 9.6 × 10⁻⁴ M (C) $9.6 \times 10^{-3} M$ (D) $9.6 \times 10^{-2} M$. ## Chapter 22 The Solubility Product Expression Select the expression or number that completes each statement and write its letter in the space at the right. - 1. The mass action expression for the reaction $Ag_2SO_4(s) \implies 2Ag(aq) + SO_4^{2}(aq)$ is - (A) $[Ag^{+}]^{2} \times [SO_{4}^{2-}]$ - (B) $[Ag^+] \times [SO_4^{2-}]$ - (C) $\frac{[Ag^+]^2 \times [SO_4^{2^-}]}{[Ag_2SO_4]}$ - (D) $\frac{[Ag_2SO_4]}{[Ag^+]^2 \times [SO_4]^{2-1}}$ 1. - 2. The solubility product constant for Fe(OH)3 is equal to - (A) $[Fe^{3+}] \times [OH^{-}]^{3}$ - (B) $[Fe^{3+}] \times [OH^-]$ - (C) $\frac{[Fe^{3+}] \times [OH^{-}]^{3}}{[Fe(OH)_{3}]}$ (D) $\frac{[Fe(OH)_{3}]}{[Fe^{3+}] \times [OH^{-}]^{3}}$ - 3. Among the following, the least soluble substance is (A) BaSO₄; $K_{\rm sp} = 1.5 \times 10^{-9}$ (B) CdS; $K_{\rm sp} = 1.0 \times 10^{-28}$ (C) PbCrO₄; $K_{\rm sp} = 2 \times 10^{-16}$ (D) AgCl; $K_{\rm sp} = 1.7 \times 10^{-10}$. - 4. The solubility product of FeS at 25°C is 4×10^{-19} . In a given solution, the concentration of Fe²⁺ is 0.02 M. The maximum concentration of S^{2-} that can be present at 25°C is (A) 1×10^{-17} M (B) 2×10^{-19} M (C) 0.02 M (D) 2×10^{-17} M. - 5. The solubility product of PbCl₂ is 1.6×10^{-5} at 25°C. The solubility of PbCl₂ at this temperature is (A) 4.0×10^{-3} M (B) 1.6×10^{-2} M (C) 4.0×10^{-2} M (D) 1.6×10^{-1} M. - 6. The solubility of PbCrO₄ at 25°C is 2.0×10^{-8} M. At the same temperature, the solubility product of PbCrO₄ is (A) 2.0×10^{-16} (B) 4.0×10^{-8} (C) 4.0×10^{-16} (D) 2.0×10^{-8} . - 7. The value of $K_{\rm sp}$ for CdS at 25°C is 1.0×10^{-28} . The molar concentration of a saturated solution of CdS at 25°C is (A) 1.0×10^{-7} (B) 1.0×10^{-14} (C) 1.0×10^{-21} (D) 1.0×10^{-28} . - 8. If the solubility product constant for BaCO₃ is 2.0 × 10⁻⁹ at 25°C, then precipitation at 25°C will occur in a solution made by mixing 1.0 L of a 1.00 × 10⁻³ molar solution of Na₂CO₃ with 1.0 L of a solution of BaCl2 that has a concentration of - (A) 0.50×10^{-6} M - (B) $2.0 \times 10^{-6} \text{ M}$ - (C) 4.0×10^{-6} M (D) $8.0 \times 10^{-6} \text{ M}$