Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

3.1 Chemical Equations

- Lavoisier observed that mass is conserved in a chemical reaction.
 - This observation is known as the law of conservation of mass."
- The quantitative nature of chemical formulas and reactions is called **stoichiometry**.
- Chemical equations give a description of a chemical reaction.
- There are two parts to any equation:
 - Reactants (written to the left of the arrow) and
 - **Products** (written to the right of the arrow):

$$2H_2 + O_2 \rightarrow 2H_2O$$

- There are two sets of numbers in a chemical equation:
 - Numbers in front of the chemical formulas (called stoichiometric coefficients) and
 - Numbers in the formulas (they appear as subscripts).
- Stoichiometric coefficients give the ratio in which the reactants and products exist.
- The subscripts give the ratio in which the atoms are found in the molecule.
 - Example:
 - H₂O means there are two H atoms for each one molecule of water.
 - 2H₂O means that there are two water molecules present.
- Note: In 2H₂O there are *four* hydrogen atoms present (two for each water molecule).
- Matter cannot be lost in chemical reactions.
 - Therefore, the products of a chemical reaction have to account for all the atoms present in the reactants."
- Consider the reaction of methane with oxygen:

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

- Counting *atoms* in the reactants:
 - 1 C;
 - 4 H; and
 - 2 O.
- In the products:
 - 1 C;
 - 2 H; and
 - 3 O.
- It appears as though H has been lost and C has been created.
- To balance the equation, we adjust the stoichiometric coefficients:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

3.2 Patterns of Chemical Reactivity

Using the Periodic Table

- As a consequence of the good ordering of the periodic table, the properties of compounds of elements vary in a systematic manner.
- Example: All the alkali metals (M) react with water as follows:

$$2M(s) + 2H_2O(l) \rightarrow 2MOH(aq) + H_2(g)$$

- The reactions become more vigorous as we move from Li to Cs.
- Sodium reacts with water to produce an orange flame.
- Potassium reacts with water to produce a blue flame.
- The reaction of potassium with water produces so much heat that the hydrogen gas produced usually ignites with a loud pop.

Combustion in Air

- Combustion reactions are rapid reactions that produce a flame.
 - Combustion is the burning of a substance in air.
 - Example: Propane combusts to produce carbon dioxide and water:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

Combination and Decomposition Reactions

- In **combination reactions** two or more substances react to form one product.
- Combination reactions have more reactants than products.
 - Consider the reaction:

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

- Since there are fewer products than reactants, the Mg has combined with O₂ to form MgO.
- Note that the structure of the reactants has changed:
 - Mg consists of closely packed atoms, and O₂ consists of dispersed molecules.
 - MgO consists of a lattice of Mg^{2+} and O^{2-} ions.
- In decomposition reactions one substance undergoes a reaction to produce two or more other substances.
- Decomposition reactions have more products than reactants.
 - Consider the reaction that occurs in an automobile air bag:

$$2\text{NaN}_3(s) \rightarrow 2\text{Na}(s) + 3\text{N}_2(g)$$

Since there are more products than reactants, the sodium azide has decomposed into Na metal and N₂

3.3 Atomic and Molecular Weights

The Atomic Mass Scale

- Consider 100 g of water:
 - Upon decomposition 11.1 g of hydrogen and 88.9 g of oxygen are produced.
 - The mass ratio of O to H in water is $88.9/11.1 \approx 8$.
 - Therefore, the mass of O is $2 \times 8 = 16$ times the mass of H.
 - If H has a mass of 1, then O has a relative mass of 16.

 - We can measure atomic masses accurately using a mass spectrometer. We know that 1 H has a mass of 1.6735 x 10^{-24} g, and 16 O has a mass of 2.6560 x 10^{-23} g.
- Atomic mass units (amu) are convenient units to use when dealing with extremely small masses of individual atoms.
- 1 amu = $1.66054 \times 10^{-24} \text{ g}$ and 1 g = 6.02214×10^{23} amu By definition, the mass of 12 C is exactly 12 amu.

Average Atomic Masses'

- We average the masses of isotopes using their masses and relative abundances to give the average atomic mass of an element.
 - Naturally occurring \mathbb{C} consists of 98.892% 12 C (12 amu) and 1.108% 13 C (13.00335 amu).
 - The average mass of C is

$$(0.98892)(12 \text{ amu}) + (0.01108)(13.00335) = 12.011 \text{ amu}$$

- Atomic weight (AW) is also known as average atomic mass.
- Atomic weights are listed on the periodic table.

Formula and Molecular Weights

- Formula weight (FW) is the sum of atomic weights for the atoms shown in the chemical formula.
 - Example: FW (H₂SO₄)
 - =2AW(H)+AW(S)+4AW(O)
 - = 2(1.0 amu) + 32.1 amu + 4(16.0 amu)
 - = 98.1 amu
- Molecular weight (MW) is the sum of the atomic weights of the atoms in a molecule as shown in the molecular formula.
 - Example: MW ($C_6H_{12}O_6$)
 - = 6(12.0 amu) + 12 (1.0 amu) + 6 (16.0 amu)
 - = 180.0 amu
- Formula weight of the repeating unit is used for ionic substances.
 - Example: FW (NaCl)
 - = 23.0 amu + 35.5 amu
 - = 58.5 amu

Percentage Composition from Formulas

• Percent composition is obtained by dividing the mass contributed by each element (number of atoms times AW) by the formula weight of the compound and multiplying by 100.

The Mass Spectrometer

- Mass spectrometers are pieces of equipment designed to measure atomic and molecular masses accurately.
- The sample is converted to positive ions by collisions with a stream of high energy electrons upon entering the spectrometer.
- The charged sample is accelerated using an applied voltage.
- The ions are then passed into an evacuated tube and through a magnetic field.
- The magnetic field causes the ions to be deflected by different amounts depending on their mass.
- The ions are then detected.

3.4 The Mole'''''

- The mole is a convenient measure of chemical quantities (just as a dozen is a convenient way to measure cooking quantities).
- 1 mole of something = 6.0221421×10^{23} of that thing.
 - This number is called Avogadro's number.
 - Thus 1 mole of carbon atoms = 6.0221421×10^{23} carbon atoms.

Molar Mass

- The mass in grams of 1 mole of a substance is said to be the **molar mass** of that substance. Molar mass is expressed in units of g/mol (also written g·mol⁻¹).
- The mass of 1 mole of ${}^{12}C = 12$ g.
- The molar mass of a molecule is the sum of the molar masses of the atoms.
 - Example: The molar mass of $N_2 = 2 \times (\text{molar mass of } N)$.
- Molar masses for elements are found on the periodic table.
- Formula weights are numerically equal to the molar mass.

Interconverting Masses, Moles, and Number of Particles

- Look at units:
 - Mass: g
 - Moles: mol
 - Molar mass: g/mol
 - Number of particles: $6.022 \times 10^{23} \text{ mol}^{-1}$ (Avogadro's number).
 - Note: $g/mol \times mol = g$ (i.e. $molar \times moles = mass$), and
 - $mol \times mol^{-1} = a \text{ number (i.e. moles } \times Avogadro's \text{ number } = molecules).$
- To convert between grams and moles, we use the molar mass.
- To convert between moles and molecules we use Avogadro's number.

3.5 Empirical Formulas from Analyses

- Recall that the empirical formula gives the *relative* number of atoms in the molecule.
- Finding empirical formula from mass percent data:
 - We start with the mass percent of elements (i.e., empirical data) and calculate a formula.
 - Assume we start with 100 g of sample.
 - The mass percent then translates as the number of grams of each element in 100 g of sample.
 - From these masses, we can calculate the number of moles (using the atomic weight from the periodic table).
 - The lowest whole-number ratio of moles is the empirical formula.
- Finding the empirical mass percent of elements from the empirical formula:
 - If we have the empirical formula, we know how many moles of each element are present in 1 mole of the sample.
 - Next, we use molar masses (or atomic weights) to convert to grams of each element.
 - We divide the grams of each element by grams of 1 mole of sample to get the fraction of each element in 1 mole of sample.
 - We multiply each fraction by 100 to convert to a percent.

Molecular Formula from Empirical Formula

- The empirical formula (relative ratio of elements in the molecule) may not be the molecular formula (actual ratio of elements in the molecule).
 - Example: Ascorbic acid (vitamin C) has the empirical formula C₃H₄O₃.
 - The molecular formula is C₆H₈O₆.
 - To get the molecular formula from the empirical formula, we need to know the molecular weight, MW.
 - The ratio of molecular weight (MW) to formula weight (FW) of the empirical formula must be a whole number.

Combustion Analysis'

- Empirical formulas are routinely determined by combustion analysis.
- A sample containing C, H, and O is combusted in excess oxygen to produce CO₂ and H₂O.
- The amount of CO₂ gives the amount of C originally present in the sample.
- The amount of H₂O gives the amount of H originally present in the sample.
 - Watch stoichiometry: 1 mol H₂O contains 2 mol H.
- The amount of O originally present in the sample is given by the difference in the amount of sample and the amount of C and H accounted for.
- More complicated methods can be used to quantify the amounts of other elements present, but they rely on analogous methods.

3.6 Quantitative Information from Balanced Equations'"

- The coefficients in a balanced chemical equation give the relative numbers of molecules (or formula units) involved in the reaction.
- We can interpret this equation as the *number of moles of reactant* that are required to give the *number of moles of product*.
 - A stoichiometric ratio is the ratio of the number of moles of one reactant or product to the number of moles of another reactant or product.
- It is important to realize that the stoichiometric ratios are the ideal proportions in which reactants are needed to form products.
- The real ratio of reactants and products present in the laboratory needs to be measured (in grams and converted to moles).
- The number of grams of a reactant cannot be *directly* related to the number of grams of a product.
 - To get grams of product from grams of reactant:
 - Convert grams of reactant to moles of reactant (use molar mass).
 - Convert moles of reactant to moles of desired product (use the stoichiometric ratio from the balanced chemical equation).
 - Convert moles back into grams for desired product (use molar mass).

3.7 Limiting Reactants"

- It is not necessary to have all reactants present in stoichiometric amounts.
- Often, one or more reactants are present in excess.
- Therefore, at the end of the reaction, those reactants present in excess will still be in the reaction mixture.
- The one or more reactants that are completely consumed are called the **limiting reactants**.
- Consider 10 H₂ molecules mixed with 7 O₂ molecules that react to form water.
 - The balanced chemical equation tells us that the stoichiometric ratio of H₂ to O₂ is 2 to 1:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$

- This means that our 10 H₂ molecules require 5 O₂ molecules (2:1).
- Since we have $7 O_2$ molecules, our reaction is *limited* by the amount of H_2 we have (the O_2 is present in excess).
- So, all 10 H₂ molecules can (and do) react with 5 of the O₂ molecules to produce 10 H₂O molecules.
- At the end of the reaction, 2 O₂ molecules remain unreacted.

Theoretical Yields

- The amount of product predicted from stoichiometry taking into account limiting reagents is called the **theoretical yield**.
- The **percent yield** relates the actual yield (amount of material recovered in the laboratory) to the theoretical yield.

SAMPLE EQUATIONS FROM OLD AP EXAMINATIONS

- 1. Magnesium metal is burned in nitrogen gas
- 2. Sulfur dioxide gas is passed over solid calcium oxide
- 3. Lead foil is immersed in silver nitrate solution.
- 4. A solution of ammonium sulfate is added to a saturated solution of barium hydroxide
- 5. Acetic acid solution is added to a solution of sodium hydrogen carbonate
- 6. Solid sodium dichromate is added to an acidified solution of sodium iodide.
- 7. A drop of potassium thiocyanate is added to a solution of iron (III) chloride.
- 8. Ethanol is completely burned in air
- 9. Hydrogen gas is passed over hot iron (III) oxide
- 10. Solutions of potassium iodide and potassium iodate are mixed in acid
- 11. Dilute sulfuric acid is added to solid carcium fluoride
- 12. Solid ammonium carbonate is heated
- 13. Methane gas is mixed with an excess of chlorine gas
- 14. A concentrated solution of ammonia is added to a suspension of zinc hyroxide
- 15. Hydrogen peroxide is added to an acidified solution of sodium bromide
- 16. Dilute hydrochloric acid is added to a dilute solution of mercury (I) nitrate
- 17. Dilute sulfuric acid is added to a solution of barium acetate
- 18. Solid phosphorous pentachloride is added to excess water

- 19. A solution of hydrogen peroxide is catalytically decomposed
 - 20. Powdered iron is added to a solution of iron (III) sulfate
 - 21. Ammonium chloride crystals are added to a solution of sodium hydroxide
 - 22. Chlorine gas is bubbled into a solution of sodium bromide
 - 23. A precipitate is formed when solutions of trisodium phosphate and calcium chloride are mixed
 - 24. Benzene is treated with bromine in the presence of a catalyst
 - 25. A solution of copper (11) sulface is electrolyzed using inert electrodes
 - 26. Hydrogen sulfide gas is bubbled through excess potassium hydroxide solution
 - 27. Solutions of silver nitrate and sodium chromate are mixed
 - 20. Socium hydroxide solution is added to a precipitate of aluminum hydroxide in water.
 - 29. Solid sodium sulfite is added to water.
 - 30. A solution of formic acid, HOOOH, is oxidized by an aciditied solution or potassium dichromate
 - 31. Ammonia gas and carbon dioxide gas are bubbled into water
 - 32. Concentrated hydrochloric acid solution is added to solid manganese(IV) oxide and the reactants are heated
 - 33. Solutions of sodium fluoride and dilute hydrochloric acid are mixed
 - A saturated solution of barium hydroxide is mixed with a solution of iron (III) sulfate
 - 35. A solution of ammonium sulfate is added to a potassium hydroxide solution

Equations of the Week

Write	net	init	equations	for the	following

- a. The complete combustion of methane (CH₄)
- b. The decomposition of Magnesium chlorate
- c. Chorine gas is bubbled into an aqueous solution of sodium iodide
- d. Magnesium ribbon is burned in air

REACTIONS

COMBINATION REACTIONS:
OplA or Ca, Ba, Sr 1) Metal oxide + water - 7 a base
1) Metal oxide + water -> a base
Ex. Solid calcium oxide is added to water
The base is calcium hydroxide
The base is calcium hydroxide
NET IDUIC ECRM!
CaO + HOH -7 Ca2+ 20H
Ex. Solid sodium oxide is added to water
Na20(1) + HOH(2) -72NaOH(aq)
The base is sodium hydroxide
NET IONIC FORM!
Na20 + HOH -72Na+ +20H

ANY GPIA metal oxide (LizO, NazO, KzO, RbzO, CazO) oz the Following GP ZA METAL OXIDES (CaO, BaO, SrO) will react in water to Form SOLUBLE BASES OR SOLUBLE METAL HYDROXIDES

2	1 Nonmetal oxide + water - 7 an acid	
	Ex. Sulfuc DIOXIDE + WATER -> CILLEDONGA CON	_
	502 + HOH -> H2 SO3 (aq)	_
	NET JONIC FURM: SO2 + HOH -> H+ +HSO2	
		_
	Ex. Sulfur TRIOXIDE ++20 -> SULFURIC ACID	
	SO3 + HOH -> H2 SO4 (ag) NET JONIC FORM:	_
	503 + HOH -> H++ HSO#	_
	Ex. Nitrogen dioxide + WATER => nitric acid NO2 + HOH => HNO3 caq)	
	NET TONTE FORM!	_
	NO2 + HOH -> H++ NO3-	
	EV 0= 10:400000000000000000000000000000000000	
	EX. DInitrogen pentoxide +WATER -> nitricacid N205 + HOH -> H+ + NO3	-
		_
	EX. Carbon dioxide + WATER -> carbonic acid	
	VET. JONIC FORM!	_
	CO2 + HOH -> H+ + HCO3	_
- :		
		_

11

.

8 Chlorates decompose in the presence of heat toyeld metallic chlorides and oxygen gas

Ex. Solid potassiin chlorate is heated in KC103-7 KC1+02 9 Electrolysis decomposes compounds into Ex. a dilute solution of sulfuricacid is electrolyzed between platinum electrodes H20-7 H2+02 In this case the voltage required to decompose water is less than the voltage required to decompose H2 SO4

Op I A metals react with water to Produce an albali base and hydrogen gas ExSolid sodium is added towater Naca + HOH -> NaOHar + Hzg) 7 NET JOUTC FORMIS: Na (0) + HOH -> Na++OH-+H2 12. Metal hydrides react with water to produce a metallic base and hydrogen Ex. Solid sodium hydride is added to -NaH(1) + HOH -> NaOH(09)+ H2(9) NET TONIC FORM is: NaH + HOH -> Na++OH+++2

USEFUL CLASSIFICATIONS OF COMPOUNDS

1. ACIDS - COMPOUNDS WITH FORMULAS THAT BEGIN WITH HC1. HNO.

THE NUMBER OF FREQUENTLY ENCOUNTERED STRONG ACIDS (ACIDS THAT ARE PRESENT IN SOLUTION VERY LARGELY AS IONS RATHER THAN AS MOLECULES) IS SMALL AND YOU SHOULD KNOW THEM BY NAME AND FORMULA

HCl - hydrochloric acid

HBr - hydrobromic acid

HI - hydroiodic acid

HNOs - nitric acid

H₂SO₄ - sulfuric acid

HClO4 - perchloric acid

AS A FIRST APPROXIMATION, ALL OTHER ACIDS MAY BE CONSIDERED WEAK (PRESENT IN SOLUTION LARGELY AS MOLECULES) UNLESS AND UNTIL THE STUDENT LEARNS OTHERWISE.

2. BASES - COMPOUNDS WITH FORMULAS THAT END WITH OH NAOH, KOH

THE NUMBER OF STRONG BASES (BASES THAT ARE PRESENT IN SOLUTION LARGELY AS METAL IONS AND HYDROXIDE IONS RATHER THAN AS MOLECULES) IS NOT LARGE, AND THESE SHOULD BE LEARNED.

LiOH lithium hydroxide

NaOH sodium hydroxide

KOH potassium hydroxide

also RLOH CSOH all Is

Ca(OH) calcium hydroxide

Sr(OH) strontium hydroxide

Ba(OH) a barium hydroxide

3. METAL OXÍDES - BINARY COMOUNDS OF A METAL AND OXYGEN
CAO
METAL OXIDES (BASIC ANHYDRIDES) REACT WITH WATER TO FORM
METALLIC HYDROXIDE. IF THESE ARE SOLUBLE THEY THEN PROVIDE
- HYDROXIDE IONS AND ARE THUS BASES IN WATER SOLUTION.

- 4. NONMETAL OXIDES BINARY COMPOUNDS OF A METAL AND OXYGEN SO₂ NONMETAL OXIDES (ACID ANHYDRIDES) REACT WITH WATER TO FORM ACIDS.
- 5. SALTS COMPOUNDS OF METALS THAT ARE NOT BASES OR METAL OXIDES NaC1, MgS, ZnSO.

 THE SALTS THAT ARE SOLUBLE IN WATER INCLUDE ALL OF THE SALTS OF LITHIUM, SODIUM, POTASSIUM, AND AMMONIUM CATIONS AND OF NITRATE AND ACETATE ANIONS. ALL CHLORIDE ARE SOLUBLE EXCEPT THOSE OF SILVER, LEAD AND MERCURY(I) IONS. ALL SULFATES ARE SOLUBLE EXCEPT THOSE OF LEAD, CALCIUM, STRONTIUM AND BARIUM. ALL OTHER SALTS SHOULD BE CONSISERED ONLY SLIGHTLY SOLUBLE UNLESS AND UNTIL ONE LEARNS OTHERWISE.
- 6. OTHER COMPOUNDS (MOST COMPOUNDS BELONG HERE.) CH_{4} , NH_{5}

IN ADDITION KEEP IN MIND

- A. UNSTABLE MOLECULES

 H2CO3---> H2O + CO2

 H2SO3 ---> H2O + SO2

 NH4OH ---> NH3 + H2O
- B. ACID ANHYDRIDES NONMETALLIC OXIDES SO₃, CO₂, SO₂, N₂O₅
 BASIC ANHYDRIDES METALLIC OXIDES CaO, MqO, Na₂O
- C. AMPHOTERIC HYDROXIDES AND OXIDES OF METALS FOR THESE REACTIONS THERE IS USUALLY AN EXCESS OF OH- IONS
 Al 3+, Cr3+, Zn2+, Sn2+

EXAMPLE A1 (OH) $_{3}$ + 3H+ ---> A1 $^{3+}$ + 3HOH A1 (OH) $_{4}$ ---> A1 (OH) $_{4}$

CHEMICAL REACTIONS AND EQUATION

SOME COMMON TYPES OF REACTIONS

A. REACTIONS INVOLVING CHANGES IN OXIDATION STATES

1- COMBINATION REACTIONS (SYNTHESIS)

TWO REACTANTS COMBINE TO FORM A SINGLE PRODUCT. MANY ELEMENTS REACT WITH ONE ANOTHER IN THIS FASHION TO FORM BINARY COMPOUNDS. THE SYMBOL FOR THE MORE ELECTROPOSITIVE ELEMENT IS WRITTEN FIRST AND VALENCE RELATIONS ARE USED TO OBTAIN THE FORMULA.

$$C_{(**)} + O_{2(**)} ----> CO_{2(**)}$$

 $N_{2(**)} + 3H_{2(**)} ----> 2NH_{3(**)}$

ALSO - AN OXIDIZER WILL REACT WITH A REDUCER OF THE SAME ELEMENT TO PRODUCE THE ELEMENT AT AN INTERMEDIATE OXIDATION STATE. EXAMPLES:

SOLUTIONS OF POTASSIUM IODIDE, POTASSIUM IODATE, AND DILUTE SULFURIC ACID ARE MIXED

$$I^- + IO_{3}^- + H^+ --- > I_{2} + H_{2}O$$

A PIECE OF IRON IS ADDED TO A SOLUTION OF IRON(III) SULFATE Fe + Fes+ ---> Fe2+

2. REACTIONS BETWEEN AN OXIDIZER AND A REDUCER PRODUCTS FROM SUCH REACTIONS CAN USUALLY BE PREDICTED FROM KNOWLEDGE ABOUT A LIMITED NUMBER OF OXIDIZERS AND REDUCERS.

IMPORTANT OXIDIZERS

FORMED IN THE REACTION

MnO4- IN ACID SOL.

Mn2+

MnO₂ IN ACID SOL.

Mn=+

MnO₄- IN NEUTRAL OR BASIC SOL.

Cr=O-2- IN ACID SOL

MnO≈

HNO₃ CONCENTRATED

NOz

HNO3 DILUTE

NO

HaSO4 HOT CONCENTRATED

SOz

METAL IC IONS

METAL OUS IONS

FREE HALOGENS

HALIDE IONS

NagOz

NaOH

HC104

C1-

IMPORTANT REDUCERS

FORMED IN THE REACTION

HALIDE IONS

FREE HALOGEN

FREE METALS

METAL IONS

SULFITE IONS (OR SO2) SULFATE IONS

NITRITE IONS

NITRATE IONS

FREE HALOGENS, DIL BASIC SOLN

HYPOHALITE IONS

FREE HALOGENS, CONC. BASIC SOLN. HALATE IONS

METAL OUS IONS

METAL IC IONS

TO PREDICT PRODUCTS OF A REACTION THAT FITS INTO THIS CATEGORY LOOK AT THE REAGENTS GIVEN IN THE QUESTION TO SEE IF THERE ARE AVAILABLE BOTH AN OXIDIZER AND A REDUCER. THIS STEP MAY INVOLVE RECOGNIZING THE IONS THAT ARE PARTS OF THE COMPOUNDS LISTED AS THE REAGENTS. THEN ONE CAN WRITE THE APPROPRIATE PRODUCTS FROM THE OXIDER AND THE REDUCER PRESENT. KEEP IN MIND THE ACID OR THE BASE PRESENT IF AN ACID OR A BASE IS LISTED AS A REACTANT. IN ACIDIC SOLUTIONS, ANY METAL IONS FORMED CAN COMBINE WITH THE ANION OF THE ACID TO FORM SALTS. KEEP IN MIND THE SOLUBILITIES OF THE SALTS THEN PREDICT IF THE PRODUCTS INCLUDE A PRECIPITATED SALT OR WHETHER IONS ARE THE APPROPRIATE PRODUCTS.

REDOX REACTIONS ARE OFTEN RECOGNIZED BY:

.... familiarization with important reducers and oxidizers
.... the clue that there is "added acid" or the solution is

"acidified"
.... the use of the supplied reduction potential reference

Examples

Manganese dioxide is added to concentrated hydrochloric acid and heated.

$$MnO_2 + H^+ ---> Mn^{2+} + Cl_2 + H_2O$$

A solution of iron(II) nitrate is added to an acidified solution of potassium permanganate.

$$Fe^{2+} + H^{+} + MnO_{4}^{-} ----> Fe^{3+} + Mn^{2+} + H_{2}O$$

Manganesium metal is added to dilute nitric acid. One of the products contains nitrogen with an exidation number of -3.

$$Mg H^+ + NO_3^- ---> Mg^2 + NH_3^0 + H_2O$$

(INFORMATION ABOUT BASIC SOLUTIONS WILL FOLLOW)

3. SOME DECOMPOSITON REACTIONS INVOLVE REDOX

A SINGLE REACTANT BREAKS APART TO FORM TWO OR MORE SUBSTANCES. MANY COMPOUNDS BEHAVE IN THIS FASHION WHEN HEATED.

CHLORATES DECOMPOSE IN THE PRESENCE OF HEAT

$$2KC10_{3(4)}$$
 ----> $2KC1_{(4)}$ + $30_{2(4)}$

A SOLUTION OF HYDROGEN PEROXIDE IS CATALYTICALLY DECOMPOSED

$$H_2O_2$$
 ----> H_2O + O_2

ELECTROLYSIS DECOMPOSES COMPOUNDS INTO THEIR ELEMENTS

$$H_{2}O ---> H_{2} + O_{2}$$

4. SINGLE DISPLACEMENT REACTIONS -ALL SINGLE REPLACEMENT REACTIONS ARE REDOX.

$$A+BX \longrightarrow AX + B$$

ONE ELEMENT REPLACES ANOTHER IN A COMPOUND. (THE ELEMENTS ARE OFTEN HYDROGEN AND A METAL)
A MORE REACTIVE ELEMENT (OFTEN IN THE FREE STATE CAN DISPLACE A LESS REACTIVE ELEMENT WITH SIMILAR PROPERTIES FROM A COMPOUND.

A very active metal replaces hydrogen from water. $2Na_{\infty}$ + $2H_{2}O$ ----> $2NaOH_{\infty}$ + H_{2}

A metal above hydrogen on the activity scale replaces hydrogen from and acid

A more active metal replaces a less active metal from a compound Zn_{m} + $CuSO_{4(mq)}$ ----> $ZnSO_{4(mq)}$ + Cu_{m}

A more active halogen replaces a less active halogen from a compound

B. <u>REACTIONS INVOLVING NO CHANGES IN OXIDATION STATES</u>

1. DOUBLE DISPLACEMENT (METATHESIS) REACTIONS

$$AX + BY ----> AY + BX$$

ATOMS OR IONS EXCHANGE PARTNERS.
THESE REACTION START WITH TWO REACTANTS AND PRODUCE TWO PRODUCTS.
SUCH REACTIONS CAN BE EXPECTED WHEN THE TWO REACTANTS COME FROM
THE TYPES OF COMPOUNDS: ACID, BASE, SALT AND WATER (FOR
CONVENIENCE WRITTEN AS HOH) THE PRODUCTS CAN BE PREDICTED BY
EXCHANGING THE POSITIVE PARTS OF THE TWO REACTANTS. THE PRODUCTS
ARE FROM THE SAME TYPES OF COMPOUNDS.

ONE THEN USES THE INFORMATION PREVIOUSLY PRESENTED TO DECIDE WHICH OF THE SUBSTANCES SHOULD BE WRITTEN AS IONS. HCl IS A STRONG ACID, NaOH IS A STRONG BASE AND NACI IS A SOLUBLE SALT, AND SO ALL THREE SHOULD BE WRITTEN AS IONS. SINCE SUBDSTANCES THAT DO NOT CHANGE ARE NOT APPROPRIATELY REPRESENTED IN A

CHEMICAL REACTION OR A CHEMICAL EQUATION THE REACTION ABOVE BECOMES

H+. + OH- --> HOH (NET IONIC EQUATION - SPECTATOR IONS REMOVED)

BaBr2(mg) + K2SO4(mg) ---> BaSO4(m) + 2KBr(mg)

 $Ca(OH)_{2,mq}$ + $2HCl_{mq}$ ----> $CaCl_{2,mq}$ + $2H_{2}O_{(1)}$

2. SOME COMBINATION REACTIONS RELATED TO METATHETICAL REACTIONS. THESE REACTIONS PRODUCE A SINGLE PRODUCT PREDICTABLE FROM THE TYPES OF THE REACTANTS INDICATED WITH EACH OF THE EXAMPLES BELOW.

METAL OXIDE + WATER ----> A BASE, THE METAL IN THE SAME OXIDATION STATE AS IN THE OXIDE.

CaO(m, + HOH(1, ----> Ca(OH)2(mq)
THEN REVISED TO

CaO(*) + HOH ---> Ca2+ + OH-

NONMETAL OXIDE + WATER ---> AN ACID, THE NONMETAL IN THE SAME OXIDATION STATE AS IN THE OXIDE

 SO_2 + HOH ----> H_2SO_3 (NO STRONG ACID OR STRONG BASE OR SOLUBLE SALT, SO NO IONS)

METAL OXIDE + NONMETAL OXIDE ---> SALT, WITH THE NONMETAL APPEARING IN A RADICAL (POLYATOMIC ION) WHERE IT HAS THE SAME OXIDATION STATE AS IN THE OXIDE

CaO + SO_2 ----> CaSO $_3$ (_NO STRONG ACID OR BASE OR SOLUBLE SALT, SO NO IONS)

3. SOME DECOMPOSITION REACTIONS (THE REVERSE OF THE COMBINATION REACTIONS IN THE CATEGORY RELATED TO METATHETICAL REACTIONS THERE IS ONE REACTANT AND THERE ARE TWO PRODUCTS IN EACH OF THESE REACTIONS

BASE ---> METAL OXIDE + WATER

Ca(OH): (**) ----> CaO (**) + HOH

ACID CONTAINING OXYGEN ---> NONMETAL OXIDE AND WATER

 $H_{z}CO_{z,q}$, ---> $H_{z}O(1)$ + $CO_{z,q}$

 $H_2SO_3(aq)$ ----> $H_2O(1)$ + $SO_2(q)$

 $HNO_3(aq)$ ----> $H_2O(1)$ + $NO_2(a)$

HEATED $H_2SO_4(x_q)$ ----> $H_2O(1)$ + $SO_2(q)$

SALT CONTAINING OXYGEN OXYGEN ---> METAL OXIDE + NONMETAL OXIDE

 $CaCO_{3(m)} \longrightarrow CaO_{(m)} + CO_{3(m)}$

4. HYDROLYSIS REACTIONS

THE REACTIONS OF SALTS WITH WATER CAN USUALLY BE HANDLED AS METHATHETICAL REACTIONS. IN ADDITION TO SALTS, SOME OF THE other COMPOUNDS, PARTICULARLY NONMETALLIC HALIDES, REACT WITH WATER. IF THE WATER IS WRITTEN AS HOH, COMBINING THE H FROM THE WATER WITH THE MORE (OR MOST) ELECTRONEGATIVE ELEMENT FROM THE OTHER COMPOUND USUALLY GIVES THE FORMULA FOR ONE OF THE PRODUCTS. THE OTHER PRODUCT CONTAINS THE REMAINING ELEMENTS. THE FORMULA FOR THIS SECOND COMPOUND USUALLY NEEDS TO BE REARRANGED IN ORDER TO MAKE CLEAR ITS ACIDIC PROPERTIES.

PC1s + HOH ---> HC1 + P(OH)s REARRANGED TO HsP0s OR MORE ACCURATELY, TO HsPH0s

5. REACTIONS OF COORDINATION COMPOUNDS AND IONS
FREQUENTLY EXCESS AMMONIA IS USED OR 15 M AMMONIUM HYDROXIDE
THE LIGANDS MOST FREQUENTLY CONSIDERED, ATTACHED TO A CENTRAL
ATOM THAT IS USUALLY A METAL ION, ARE THE AMMONIA MOLECULE AND
THE HYDROXIDE ION.

KEEP IN MIND THAT THE NUMBER OF LIGANDS ATTACHED TO A CENTRAL METAL ION IS SOMETIMES TWICE THE OXIDATION NUMBER OF THE CENTRAL METAL: $Ag(NH_3)_2^+$, $Zn(OH)_4^{2+}$

THE BREAKUP OF THESE COORDINATION IONS IS FREQUENTLY ACHIEVED BY ADDING AN ACID. THE PRODUCTS ARE THE METAL ION AND THE SPECIES FORMED WHEN HYDROGEN IONS FORM THE ACID REACT WITH THE LIGAND (NH4+ FROM NH5 AND HOH FROM COL-)

 $A1 (OH)_4$ + H+ --> $A1^{3+}$ + HOH

6. REACTIONS BASED ON NONWATER DEFINITIONS OF ACIDS AND BASES BOTH BRONSTED AND LEWIS DEFINITIONS OF ACIDS AND BASES CAN BE ILLUSTRATED BY THE WRITING OF EQUATIONS. RECOGNIZING THAT AN ACID AND A BASE ARE THE REACTANTS ACCORDING TO ONE OF THE DEFINITIONS AND KNOWING HOW THEY REACT IS THE BEST APPROACH. BRONSTED REACTIONS INVOLVE THE TRANSFER OF A PROTON. LEWIS REACTIONS INVOLVE THE FORMATION OF A COORDINATE COVALENT BOND.

KEEP IN MIND LEWIS ACIDS AND BASES (NH $_{\rm S}$ + BF $_{\rm S}$) AND ANHYDRIDES SUCH AS CaO + SO $_{\rm S}$

C. ORGANIC REACTIONS - THE MOST COMMON TYPE OF REACTIONS ARE:

- 1. ADDITION REACTIONS AKENE OR ALKYNE PLUS HALOGEN OR HALIDE OBSERVES MARKOVNIKOFF'S RULE (WHEN A HYDROGEN HALIDE IS ADDED TO AN ALKENE, THE HYDROGEN ATOM NORMALLY ENDS UP ON THE CARBON ATOM THAT ALREADY HAS THE MOST HYDROGEN ATOMS.
 - 2. FORMATION OF ALCOHOLS VIA ADDITION REACTION
- 3. ESTERIFICATION ACID PLUS ALCOHOL GIVES AN ESTER PLUS WATER.

Redox: Combination reactions.

An oxidizer will react with a reducer of the same element to produce the element at an intermediate oxidation state.

Examples: Solutions of potassium iodide, potassium iodate, and dilute sulfuric acid are mixed. 1.

$$I^- + IO_3^- + H^+ \Rightarrow I_2 + H_2O$$

A piece of iron is added to a solution of iron (III) sulfate.

$$Fe + Fe^{3+} \Rightarrow Fe^{2+}$$

Redox: Replacement reactions.

A more reactive element (often in the free state) can displace a less reactive element with similar properties from a compound.

Examples:

Zinc metal reacts with tin (II) sulfate.

$$Zn + Sn^{2+} \Rightarrow Zn^{2+} + Sn$$

Free chlorine reacts with sodium bromide.

$$Cl_2 + Br' \Rightarrow Cl' + Br_2$$

Solid barium peroxide is added to cold sulfuric acid.

$$BaO_2 + H^+ + SO_4^{2-} \Rightarrow BaSO_4 + H_2O_2$$

Redox: Decomposition reactions

Examples:

A solution of hydrogen peroxide is catalytically decomposed. 1.

$$H_2O_2 \Rightarrow H_2O + O_2$$

Chlorates decompose in the presence of heat.

$$KClO_3 \Rightarrow KCl + O_2$$

Electrolysis decomposes compounds into their elements.

$$H_2O \Rightarrow H_2 + O_2$$

Name	

Problem

A salt contains only barium and one of the halide ions. A 0.158 g sample of the salt was dissolved in water, and an excess of sulfuric acid was added to form barium sulfate (BaSO₄), which was filtered, dried, and weighed. Its mass was found to be 0.124 g. What is the formula of the barium halide?

LIMITING REACTANT AND THEORETICAL YIELD

- THE REACTANT IN EXCESS IS THE SUBSTANCE WHICH WILL HAVE SOME LEFT OVERS.
- THE LIMITING REACTANT IS THE SUBSTANCE WHICH WILL BE ENTIRELY CONSUMED IN THE REACTION.
- THE <u>THEORETICAL YIELD</u> IS THE AMOUNT OF PRODUCT THAT WOULD BE FORMED IF ALL OF THE LIMITING REACTANT WERE CONSUMED.

Often, you will be told the amounts of two different reactants and asked to determine which is the limiting reactant and calculate the theoretical yield of product. To do this, it helps to follow a systematic procedure.

- 1. Calculate the amount of product that would be formed if the first reactant were completely consumed.
- 2. Repeat this calculation for the second reactant; that is calculate how much product would be formed if all of that reactant were consumed.
- 3. Choose the smaller of the two amounts calculated in 1 and 2. This is the theoretical yield of product; the reactant that produces the smaller amount is the limiting reactant. The other reactant is in excess; only part of it is consumed.

Example:

Consider the reaction

 $2 Sb_{1} + 3 I_{1} ---> 2 SbI_{1}$

Determine the limiting reactant and the theoretical yield of product if we start with

a. 1.20 mol Sb and 2.40 mol I,

b. 1.20 g Sb and 2.40 g I,

REMEMBER IN DECIDING UPON THE THEORETICAL YIELD

OF PRODUCT YOU CHOOSE THE SMALLER OF THE TWO

CALCULATED AMOUNTS.

THE ACTUAL YIELD IS WHAT YOU GET. THE THEORETICAL YIELD IS WHAT YOU WOULD GET IF EVERYTHING IN THE EXPERIMENT WENT PERFECTLY.

LIMITING REACTANTS CONTINUED

ANOTHER METHOD TO FIND LIMITING REACTANTS

- 1. FIND THE MOLAR MASS OF ALL SUBSTANCES IN THE PROBLEM.
- 2. FIND THE NUMBER OF MOLES OF EACH OF THE REACTANTS.
- 3. DIVIDE THE REACTANTS MOLES BY THEIR RESPECTIVE COEFFICIENTS THIS TELLS THE NUMBER OF TIMES THE REACTION CAN RUN.
- 4. THE REACTANT WITH THE FEWEST NUMBER OF TIMES IS THE LIMITING REACTANT

The molecular formula of a hydrocarbon is to be determined by analyzing its combustion products and investigating its colligative properties.

a. the hydrocarbon burns completely, producing 7.2 g of water and 7.2 liters of CO, at standard conditions. What is the empirical formula of the hydrocarbon?

Std. conditions (O'C flatm) means I make of any gas will occupy 22.4L

b. calculate the mass in grams of 0 required for the complete combustion of the sample of the hydrocarbon described in a.

c. the hydrocarbon dissolves readily in CHCl. The freezing point of a solution prepared by mixing 100 g of CHCl and 0.600 g of the hydrocarbon is -64.0 °C. Calculate the moderate weight of the hydrocarbon.

d. What is the molecular formula of the hydrocarbon?

CHE	MI:	۲Р	\mathbf{r}	2	ΔP

CHEMISTRY 2 AP	NAME
WRITE BALANCED NET	EQUATIONS OF THE WEEK #1 EQUATIONS FOR THESE REACTIONS

- A. COMPOSITION REACTIONS
- 1. MAGNESIUM METAL IS BURNED IN NITROGEN GAS
- 2. SULFUR DIOXIDE GAS IS PASSED OVER SOLID CALCIUM OXIDE
- **B. DECOMPOSITION REACTIONS**
- 3. SOLID AMMONIUM CARBONATE IS HEATED
- 4. A SOLUTION OF HYDROGEN PEROXIDE IS CATALYTICALLY DECOMPOSED

REPLACEMENT REACTIONS

- 5. LEAD FOIL IS IMMERSED IN SILVER NITRATE SOLUTION
- 6. CHLORINE GAS IS BUBBLED INTO A SOLUTION OF SODIUM BROMIDE

PERIODIC TABLE OF THE ELEMENTS

Table of Selected Radioactive Isotopes

	<u></u>			1.			T.:-			·			·			· y			-,			
18/VIII	4.00260	4.216 0.95 1.78ct	1s' Hellum	10 20.1797	27.10 24.55	1s*2s*p* Neon	18 39.948	A	[Ne]3s²p²	83.80	120 85	(Ar)30 4s·c	131.23	×		(22)	α		118 (293)	() [(Rujst *84"78")	(Ununoctium)
-	<u>N</u>	4.216 0.95		4	24.5	5 	<u> </u>	54.58 58.58		7.			Ŋ			+				- '		_
			17/VIIB	9 18.99840	53.55	1.696 (1s ⁻ 2s ⁻ p ⁻ Fluorine	7 35.4527	239.18	(Nej3s'p'	35 79.904	331.65	3.12 (Arj3d°assph Bromine	53 126.9045	457.5 386.7	Kr]4d 5s p	85 (210)	V	Xej41**5d**6s*p: Astatine	17	:		Conumsephrum
Letter m.in. iss number if y stand re- s. The table nany others ymbols de- as follows radiation)		ate		15.9994	0		32.066	<u>رن</u>		19	٦		8:	ک ا			_					
handvacturo), Letter m in the same mass ournee min. h. d. and y stand re lays, and years. The labbt ver isolopes; many other to be radioactive but with or be radioactive but with n included. Symbols de of decay are as follow!	:	rez tsomeric st	16/VIB	8	54.8 54.8	1s/2s/p² 1s/2s/p² Oxygen	16	382.2		100	858	[Ar]3d**4s²p² Selentum	52	1261 722.72 6.24	Krj4d*5s*p* Telturium	84	. 25				Bridge Bridge	
and the street of the street o	alpha particle emission beta particle (electron) emission positron amission	orbital electron capture isometric transition from upper to lower isometric state sportaneous lission	15/VB	14.0067	63.15	1s*2s*p* Nitrogen	1530.97376	317.3	[Ne]3s'p³	33 74.9216	H76 mer. 1090	[Ar]3d**4s*p* Arsenic	121.760	See: 5	[Kr]4d":5s?p? Antimony	83 208.9804	~	41"-5d"-6s"p3 Bismuth	15)	(Hounnandhum)	
reference of ano vin parentle econds. m / the longe pared. Iso eding 10 ¹² incipal mo es are gen.	icle emissi de (efectro	ctron capturansistics ansition from the first fi		12.011		`	-	317.3		72.61	F 1090		710 51	0981		207.2	544.59	. Sej.	(58	·		
dicates an iso dicates an iso dicates an iso specifically for a mcfudes mainth have been pre half-tives excerning the pre (these processed	alpha particle emission Beta particle (efection) Application amission	EC orbital electron capture If isomeric transition from SF spontaneous lission	14/IVB	9	3825	1s 2s p Carbon		2630	[Ne]3s²p² Sificon	32 72	•	0 5	50 118.710	2876 505 12 5.31	Kr 4d '95s'p" TIn	82 %	2023 600.65	[Xe 41**5d**68*p2 [Xe 41**5d**68*p3 Lead Bismuth	114 (285)		Isolation of the Control of the Cont	
			13/IIIB	10.811	<u> </u>	1s-2s-p* Boron	13 26.98154	Z	[Nej3s*p*	69.723	Ğ.		114.82		td"55°pt	204.383	<u> </u>	-5d' 6s-p1 allium	13		(Onvatrium)	1
			_	ις,	2365		+	2.70 2.70	<u>-</u>	33	302.92	<u></u>	49	2350 429.78 7.31			1746 577		-			1
									12/IIB	30 65.39	1180 2 73 2	jArj3d ¹⁰ 4s² Zinc	48 112.41	1040 594 76 8.65	[Kr]4d '95s? Cadmlum	80 200.59	234.31	Xeja" 5d" 6s? Mercury	112(277)		Rajst-6d-7sr (Rajst-6d-7sr (Ununblum)	
13.28 x 10 x 4 x 11 5 5 x 10 x 3 x 10 x	7.346 d) ji 87.75 yi ii	25.4×10° yr. 38×10° yr. 83×10° yr.	7.37 × 10 'yl 1632 din 1812 din	155 10 'g 35 10 ge. 9 14 10 'ge.	351 yl 11 200 yl 11 27 di 11	2764 2764 2014	55 der 58 mmj 30 mmj	(A) 444 (A) 444 (A) 4444 (A) 4444	11/IB	63.546	3	3d"iqs pper	107.868	10	[Kr]4d '05s' Silver	79196.9665	Ac	[Xe]41**5d*65°	(272)		Rajsti-6d*7s" [Unununlum]	
23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	3888 4	8888		247 248 14 747	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3388 4		100 100 100 100 100 100 100 100 100 100		29	2840 1356.6 8.96		2 47	2436 1235.08 10.50		_	3130 1337.58		11	. []		4
ਤ <u>ਵ</u>			, 4EC	. •				***	10	28 58.6934	30b5 1726 8.90	(Arj3d*4s' Nickel	46 106.42	3240 1825 12.0	Krj4d 19 Palladium	78 195.08	2042.1	Xoj4f*45d*6s1 Platfnum	10 (269)		Rnjstred#7s** (Ununnillium)	
19.00 d C C C C C C C C C C C C C C C C C C	202		78 4 FC 197 x 10 15 ct dy	e o E		7 (193 min) K		0 67.30	VIIIA—	58.9332		<u> </u>			_	192.22	20.27		-			4
¥		184 202 203 203 203 203 203 203 203 203 203	200 200 200 200 200 200 200 200 200 200	25 S	1 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	\$ 12 E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		>	27	3143 1768 8.90	<u></u>	_	3970 2236 12.41	[Kr]4d"5s1 Rhodium		2720	Xe]41 ¹⁴ 5d '6."	109 (268)	11	Rnjsfr46d7s*	
(60.204) (7.74) (7.74) (10.74) (10.74) (10.74) (10.74) (10.74)	104/1 08/11 0 x 10' y 11	10.17 4 II 1284 II 10.10°4 E 40.314 II	2844) 19.1 h ji 11.1 d ji	84 K 62 4 # * 10 4 #	14 Jr. H. 14 15 Jr. H. 14 10 Jr. Jr.	23.10°416.# 23.44	2804 // 1204 F	(47 × 10° 42) (17 × 10° 42) (18 × 10° 42)	&	26 55.845		gg	4 101.07	2610 12.37 BU	Krjad 5st Ruthenium	6 190.23	S	[Xe]41 ¹⁴ 5d ⁶ 6s ² Osmium	108 (265)	% 	Hnjsti-6d*7s" Hassium	
EEE	೬೮೮	7.64.06 G∷oa	423	5 5 5 5 5 5 5 5 5 5 5 7 5	888 888 888 888 888 888 888 888 888 88	:=E=	821 821 821 821 821 821 821 821 821 821	25 47 581 182 475 183 485	4	3380	3023 1808 7.87		(88)	2610 12.37	- Æ	207 76	3300 E			ا ، ا	1 120	
की है ह ै (ह			작 후			₹	ĘĘ	åå	7/VII.	54.5	2235 1518 7,44	[Ar]3454s2 Manganese	~	453# 247# 11.5	[Kriter 15s7 Technetiun	186	32 82 8	[Xe]41"5d%s? Rhenium	107 (264)	<u>ලිබ</u>	(Rajst-46457s Bohrium	
(1884) Par 1973 Par 1	05340'9# 05344'9 2.1 x 10'4E.	1972 411 1874 11 148 - 10 411 128 6 411	11066011" E	(35.15.4) / (25.15	12 13 10 47 21 13 10 47 00/48	0334KC 0704JE 17 x 10' y 1'	12/2 ALC 1252 di /r (* 45 di /r	(455 style) (45 style) (75 style)	6/VIA	51,996	Č	[Arjad54s] Chromium	95.94		[Kr]4d°5s' Molybdenum	183.84	3	[Xe]41"5d*6s Tungsten	_	(P)		
18 	2 2 2 3 1 4 4 1	£ % ≠ \$:	822	8888	885	556	25		/9		7 2945 2130 7.19	Chrc	_	4912 2896 10.22	Krj4 Molyb	74	3695	[Xe]4f". Tung		111	Seabo	
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 d#1.tk	, , , , , , , , , , , , , , , , , , ,			- T	<u> </u>		_	5/VA	3 50.9415	> • • •	Arj3d≒ts² Vanadium	92.9064		(Krj4d*5s† Nioblum	73 180.9479	تقا	(Xej4(**5d36s* Tantalum	105 (262)		Rojsti-6d17s? Dubnium	
15.3 med pl (12.26 x pl (53.3 dp Cc) (1 6 x 10 pc) (25.30 y pc) (109.8 min) (2 002 y pc)	(1502 H // (20 × H // (7.2 × 10 //	(87.2 d) y (87.2 d) y (3.01 x 10 (37.2 mol y)	12.02 d R. (7.05 // // (1.78 - 10 / // /-	(165 d p	7 10 45 71 10 10 10 10 10 10 10 10 10 10 10 10 10	(440-9) (7884)/ (770-016	5277411 GAC N.R.	12704B		47.87	3650 2163 6.11			2 % e			3293					
: # # · # # # # # # # # # # # # # # # #	. 8 8 2 2 8 8 8 2 2 8 8 8 8	,	} ¥	ភ្នំអំពុំ នៃង៩≃	4 € 2 8	9 8 9 9 4 9	8 % 9 Ž	₫ 3.2	4/IVA	_ '	3560 1935 4.54	[Ar]30²4s² Titanium	40 91,224	2128 2128 6.51	Krj4d 25s - Zirconium	72 178.49	13.31	[Xe]4f**5d²6s² Hafnium	104 (261)	<u>ڪي</u>	(Rnj51**6d?7s?* Rutherfordium	
									٨	44.9559	4	ts,			$\overline{}$				(227)	<u>:</u>		ľ
			Г		—					7	<u>ک</u>	(Ar)3d¹4s? Scandium		4,47	(Kr)4d15s7 Yttrium		6.15	[XeJ5d¹6s² Lanthanum	 68	3470° 1324 10.07 AC	[Rn]6d'7s² Actinium	
		!	ন			Beryllum	12 24.305	⁹²² VIQ	[Ne]3s? Magnesfum	0 40.078	3	[Ar]4s? Calcium	8.62 8.62	Š	Strontium	5 137.33	8	Xej6s² Bartum	(SZ6)	8 2	[Rn]7s² Radium	
9 -	1 1 2 2 4			_	1.85		_	<u></u>	_	⁸⁸ 20	1.55			1042			S E	-	(EZZ)	F 678 678 678 678		/alues
GROUP 1/IA	2028	13.81 0.0699 † 15.1	Hydro		0.53	Lithium	9511	371.0	Sodium	19 39.0983	336.8 0.86	[Ar]4s' Potassium	37 85.4678		Rubidium	55132.3054	301.54	[Xe]6s ' Cesium	_		[An]7s¹ Francium	* Estimated Values
_					,							1	· • •			6	<u> </u>			ا م. ه		

* 58 140,12 59140,8977 60 144,24 67 150,38 63 151,384 64 157.25 65 158,923 66 157,34 67 174,987
Section | Production** | 90 222.0381 91 231.0339 92 238.023 93 (237) 94 (244) 95 (243) 96 (347) 97 (237) 98 (251) 99 (251) 100 (251) 101 (259) 102 (259) 103 (252 OXIDATION STATES (Bold most stable)

DENSITY at 300 K (3) ATOMIC NUMBER MELTING POINT, K

NOTES:

(1) Black — solid.

Red — gas.

Blue — iquud.

Outline — synthetically prepared. Cocyagn 2001 VWR Scientific Outs, 48 Pagns Reserved

Srde 7